Abstract

Two-dimensional/three-dimensional (2D/3D) Ruddlesden-Popper perovskite materials have shown the enormous potential to achieve both efficient and stable photovoltaic devices for commercial applications. Unfortunately, the single function of spacer cations limits their further improvements in efficiency to reach values as high as those of 3D perovskites. Herein, we developed a new-type multifunctional heterocyclic-based spacer cation of 2-(methylthio)-4,5-dihydro-1H-imidazole (MTIm+) to achieve a synchronous improvement of efficiency and stability for 2D/3D perovskite solar cells (PSCs). Owing to the presence of special chemical groups (imidazole and methylthio), strong interactions have been found between MTIm+ and the 3D perovskite component, leading to an excellent passivation effect. More important, at the initial stage of crystallization, uniform nucleation distribution would be generated around the spacer cation, which is helpful for improved crystallinity and reduced growth defects. The smaller layer space compared to that of cations based on aromatic hydrocarbons caused effective carrier transfer between inorganic layers in 2D/3D perovskites. As a result, the 2D/3D (n = 30) PSCs based on MTIm exhibit a champion PCE up to 21.25% with a high Voc of 1.14 V. Besides, the 2D/3D perovskite devices have realized dramatically enhanced humidity and thermal stability, maintaining 94% of the starting PCE enduring aging at about 50% RH for 2880 h and at 85 °C for 360 h, respectively. We believe that it would provide a significant strategy to further promote the photovoltaic performances and the long-term stability of 2D/3D perovskite devices toward future practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call