Abstract

Multifunctional graphene quantum dots (GQDs) conjugated layered protonated titanate (LPT) nanoflowers have been developed as a promising system for fluorescence imaging and targeted drug delivery. The layered structure of the titanate nanoflowers provides a high specific area for loading drugs. The negatively charged nanocarrier shows a high loading capacity for doxorubicin (DOX). The fluorescence of GQDs reveals the intracellular localization of nanocarriers, suggesting that the uptake is via active endocytosis. Anti-HER2 labelling not only enables rapid uptake into HER2-overexpressing cancer cells, but also improves the nuclear accumulation of DOX. While the drug-free nanocarriers are highly biocompatible for up to 200 μg mL−1, the DOX loaded nanocarriers are more potent than free DOX in anticancer therapy. It is demonstrated that the anti-HER2–GQD–LPT system is a promising platform for simultaneous cancer imaging and anticancer therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.