Abstract
Developing effective lymph-node (LN) targeting and imaging probes is crucial for the early detection and diagnosis of tumor metastasis to improve patient survival. Most current clinical LN imaging probes are based on small organic dyes (e.g., indocyanine green) or radioactive 99mTc-complexes, which often suffer from limitations, such as rapid photobleaching, poor signal contrast, and potential biosafety issues. Moreover, these probes cannot easily incorporate therapeutic functions to realize beneficial theranostics without affecting their LN-targeting ability. Herein, we have developed dual-ligand-/multiligand-capped gold nanoclusters (GNCs) for specific targeting, near-infrared (NIR) fluorescence imaging, diagnosis, and treatment of LN cancer metastasis in in vivo mouse models. By optimizing the surface ligand coating, we have prepared Au25(SR1)n(SR2)18-n (where SR1 and SR2 are different functional thiol ligands)-type GNCs, which display highly effective LN targeting, excellent stability and biocompatibility, and optimal body-retention time. Moreover, they can provide continuous NIR fluorescence imaging of LNs for >3 h from a single dose, making them well-suited for fluorescence-guided surgery. Importantly, we have further incorporated methotrexate, a chemotherapeutic drug, into the GNCs without affecting their LN-targeting ability. Consequently, they can significantly improve the efficiency of methotrexate delivery to target LNs, achieving excellent therapeutic efficacy with up to 4-fold lower hepatotoxicity. Thus, the GNCs are highly effective and safe theranostic nanomedicines against cancer lymphatic metastasis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.