Abstract

High ionic conductivity, good mechanical strength, strong electrode adhesion, and low volatilization are highly desired properties for flexible solid electrolytes. However, it is difficult to realize all these properties simultaneously, which needs a rational synergy of different electrolyte constituents. Here, we present the use of polyoxometalates as versatile enhancers to fabricate nonvolatile flexible hybrid polymer electrolytes with improved conductive, stretchable, and adhesive properties. These electrolytes are based on the molecular hybridization of a polyacrylate elastomer, phosphoric acid, and a commercial polyoxometalate H3PW12O40 (PW). PW can serve as a nanosized plasticizer to favor the chain relaxation of polyacrylate and improve stretchability. Meanwhile, PW as a solid acid can increase the proton concentration and form a hybrid hydrogen-bonding network to facilitate proton conduction. Besides, the strong adsorption ability of PW on solid surfaces enables the electrolytes with enhanced adhesion. The hybrid electrolyte with 30 wt % PW shows a break stress of 0.28 MPa, a break elongation of 990%, and a conductivity of 0.01 S cm-1 at 298 K, which are 1.8, 1.8, and 2.5 times higher compared to the case without PW, respectively. Moreover, PW enhances the adhesive strength of hybrid electrolytes on polypropylene, steel, and glass substrates. The flexible supercapacitors based on the hybrid electrolytes and polyaniline electrodes hold a stable electrode-electrolyte interface and exhibit a high specific capacitance of 592 mF cm-2 and an excellent capacitance retention of 84% after 6000 charge-discharge cycles. These results demonstrate great potential of polyoxometalates as multifunctional enhancers to design hybrid electrolyte materials for energy and electronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.