Abstract
A multifunctional, dual-drug carrier platform was successfully constructed. Core-shell structured NaGdF4:Yb/Er@NaGdF4:Yb@mSiO2-polyethylene glycol (abbreviated as UCNPS) nanoparticles loaded with the antitumor drug, doxorubicin (DOX) were incorporated into poly(ɛ-caprolactone) (PCL) and gelatin loaded with antiphlogistic drug, indomethacin (MC) to form nanofibrous fabrics (labeled as MC/UCNPS/DOX) via electrospinning process. The resultant multifunctional spinning pieces can be surgically implanted directly at the tumor site of mice as an orthotopic chemotherapy by controlled-release DOX from mesoporous silicon dioxide (SiO2) and upconversion fluorescence/magnetic resonance dual-model imaging through NaGdF4:Yb/Er@NaGdF4:Yb embedded in MC/UCNPS/DOX in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.