Abstract

Tin-lead (Sn-Pb) mixed perovskites is beneficial to a single-junction or all-perovskite tandem device. However, the poor quality of the perovskite surface resulting from Sn2+ oxidation and uncontrollable crystallization degrades device performance and stability. Herein, based on interface engineering, a novel biguanide derivative of PZBGACl is employed that integrates different types of N-related groups to reconstruct the surface/grain boundaries of Sn-Pb perovskite. Combined with the microcorrosion effect of isopropanol solvent, PZBGACl can induce surface recrystallization of perovskite, and passivate various types of defects via hydrogen bond or Lewis acid-base interaction, leading to an excellent perovskite film with reduced stress, larger grain size, and more n-type surface. As a result, the obtained Sn-Pb solar cell achieves a power conversion efficiency of 22.0%, and exhibits excellent N2 storage/operation stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call