Abstract
Developing stable cathode materials that are resistant to storage degradation is essential for practical development and industrial processing of Na-ion batteries as many sodium layered oxide materials are susceptible to hygroscopicity and instability upon exposure to ambient air. Among the various layered compounds, Fe-substituted O3-type Na(Ni1/2Mn1/2)1-xFexO2 materials have emerged as a promising option for high-performance and low-cost cathodes. While previous reports have noted the decent air-storage stability of these materials, the role and origin of Fe substitution in improving storage stability remain unclear. In this study, we investigate the air-resistant effect of Fe substitution in O3-Na(Ni1/2Mn1/2)1-xFexO2 cathode materials by performing systematic surface and structural characterizations. We find that the improved storage stability can be attributed to the multifunctional effect of Fe substitution, which forms a surface protective layer containing an Fe-incorporated spinel phase and decreases the thermodynamical driving force for bulk chemical sodium extraction. With these mechanisms, Fe-containing cathodes can suppress the cascades of cathode degradation processes and better retain the electrochemical performance after air storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.