Abstract

An important part of pathogenesis of Alzheimer's disease (AD) is attributed to the contribution of AGE (Advanced Glycation Endproducts) and ALE (Advanced Lipid peroxidation Endproducts). In order to attenuate the progression of AD, we designed a new type of molecules that consist of two trapping parts for reactive carbonyl species (RCS) and reactive oxygen species (ROS), precursors of AGE and ALE, respectively. These molecules also chelate transition metals, the promoters of ROS formation. In this paper, synthesis of the new AGE/ALE inhibitors and evaluation of their physicochemical and biological properties (carbonyl trapping capacity, antioxidant activity, Cu2+-chelating capacity, cytotoxicity and protective effect against in vitro MGO-induced apoptosis in the model AD cell-line PC12) are described. It is found that compounds 40b and 51e possess promising therapeutic potentials for treating AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.