Abstract

A hypersonic airborne radome must possess multiband electromagnetic transparency, high specific strength, and thermomechanical resistance to ensure proper antenna operation. However, achieving these multifunctional properties in radome wall design is challenging due to conflicting material requirements. Moreover, existing design methods for arbitrary multiband and broadband hypersonic radomes are insufficient. This paper presents an efficient method that integrates artificial intelligence and an evolutionary algorithm to enable the multidisciplinary synchronous design of the radome wall. The designed radome walls using multilayered porous silicon-nitride ceramics achieve power transmission efficiency exceeding 90% in a broadband of 30 GHz or arbitrary multiple bands with bandwidths of 5 GHz, covering the centimeter-to-millimeter wave range. Moreover, the designed laminate also meets requirements of flexural strength surpassing 60 MPa and a maximum thermal stress–strength ratio below 1. Notably, the utilization of artificial intelligence accelerates the design process by at least 1093 times compared to conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.