Abstract
The inherent characteristics of resin composite can lead to micro-leakage after polymerization shrinkage. The bacteria invasion through edge micro-leakage and attachment onto the material surface can cause secondary caries, reducing the service life of resin composites. In this study, magnesium oxide nanoparticles (nMgO) as an inorganic antimicrobial agent and bioactive glass (BAG) as a remineralization agent were simultaneously incorporated into the resin composite. With the addition of both nMgO and BAG, the resin composite showed an excellent antimicrobial effect compared to the resin composite with nMgO or BAG only. The remineralization capacity of demineralized dentin increased with the increasing content of BAG. Vickers hardness, compressive strength, and flexural strength of the resin composite with nMgO-BAG were not significantly affected compared to the ones with the same total filler amount but with BAG only. The depth of cure and water sorption values of the resin composite showed an increasing trend with the increasing total amount of nMgO and BAG fillers. This developed multifunctional resin composite is expected to reduce bacterial invasion and promote remineralization of early caries damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.