Abstract

Here we report the preparation of a novel multifunctional core-shell nanocomposite material that contains a nonporous dye-doped silica core and a mesoporous silica shell containing photosensitizer molecules, hematoporphyrin (HP). This architecture allows simultaneous fluorescence imaging and photosensitization treatment. The photosensitizer molecules are covalently linked to the mesoporous silica shell and exhibit excellent photo-oxidation efficiency. The efficiency of photo-oxidation of the core-shell hybrid nanoparticles was demonstrated to be significantly improved over that in the homogeneous solution. The mesoporous silica nanovehicle acts not only as a carrier for the photosensitizers but also as a nanoreactor to facilitate the photo-oxidation reaction. The doping of fluorescence dyes into the nonporous core endows the imaging capability, which has been demonstrated with cell imaging experiments. This approach could be easily extended to conjugate other functional regents if necessary. These multifunctional nanovehicles possess unique advantages in acting as nanocarriers in photodynamic therapy to allow simultaneous high-resolution targeting and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.