Abstract

Flexible sensors have shown great potential in remote health monitoring, body movements track, electronic skin, human-machine interfaces, and soft robotics. Hydrogels possess exceptional stretchability, flexibility and biocompatibility that render them appealing candidates for wearable flexible sensors. Among them, considerable efforts have been devoted to developing conductive hydrogels to achieve multifunctional wearable sensing through using functional groups/additives/nanofillers to modify the hydrogel network in recent years. This review summarizes recent advances of applications of hydrogels in flexible wearable sensors, such as sweat sampling and flexible electrodes, strain/pressure sensors and touch panels, focuses on the multifunctional conductive hydrogels-based flexible wearable sensors with self-healing, self-adhesion, or anti-freezing capabilities. A brief introduction to representative synthesis methods and strategies of conductive hydrogels is also presented. In the end, we also provide a personal perspective on the future development, and address the remaining challenges in the commercialization of conductive hydrogels-based multifunctional flexible wearable sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.