Abstract
Fluorescence microscopy is crucial in various fields such as biology, medicine, and life sciences. Fluorescence self-interference holographic microscopy has great potential in bio-imaging owing to its unique wavefront coding characteristics; thus, it can be employed as three-dimensional (3D) scanning-free super-resolution microscopy. However, the available approaches are limited to low optical efficiency, complex optical setups, and single imaging functions. The geometric phase lens can efficiently manipulate the optical field’s amplitude, phase, and polarization. Inspired by geometric phase and self-interference holography, a self-interference fluorescent holographic microscope-based geometric phase lens is proposed. This system allows for wide-field, 3D fluorescence holographic imaging, and edge-enhancement from the reconstruction of only one complex-valued hologram. Experiments demonstrate the effectiveness of our method in imaging biological samples, with improved resolution and signal-to-noise ratio. Furthermore, its simplicity and convenience make it easily compatible with existing optical microscope setups, making it a powerful tool for observing biological samples and detecting industrial defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.