Abstract
Considering the distinctive oxidative coupling characteristic of tannin acid, it was used as an interfacial interlayer to build a nano-coating structure on the surface of carbon fiber (CF)using amino-modified graphene oxide (GON) via Schiff base reaction. Furthermore, a kind of multifunctional composite paper (PTCF/GON) with excellent electromagnetic interference shielding, antibacterial and sound absorption properties was fabricated using surface modified CF (TCF/GON) and plant fibers. The increased active groups on the surface of TCF/GON improved its hydrophilicity and enhanced its dispersibility in water, which facilitated to form an effective interconnected conductive network of composite paper via traditional wet forming process. Composite paper fabricated by 30 wt% surface decorated CF (PTCF1.5/GON1.2) achieved an electromagnetic interference shielding effectiveness as high as 43.4 dB in X-band, shielding 99.9 % of incident electromagnetic energy. Meanwhile, PTCF1.5/GON1.2 exhibits good sound absorption performance in specific frequency bands, with a sound absorption coefficient of 0.98 around 1180 Hz. Besides, PTCF1.5/GON1.2 also exhibited excellent antibacterial properties. This strategy provides an economical and practical method for manufacturing multifunctional electromagnetic shielding materials with superior performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.