Abstract

The development of sustainable and well-performing food packaging materials takes on critical significance, whereas it is still challenging. To overcome the shortcomings of polyvinyl alcohol (PVA) as a degradable packaging material, in this work, hydrophobic quaternary ammonium salt (QAS) modified cellulose nanofibers (CNF) and tannic acid‑iron ion coordination complexes (TA-Fe) were adopted for the preparation of functional PVA films. The modified CNF (CNF-QAS) not only improved the mechanical properties and water resistance of PVA, but also endowed it with antibacterial ability. In addition, the synergistic antibacterial capability with CNF-QAS was achieved using TA-Fe with photothermal therapy. As a result, the modulus, elongation at break, tensile strength, and water contact angle of the prepared PVA films were examined as 88 MPa, 200 %, 11.7 MPa, and 94.8°, respectively. Furthermore, with the assistance of CNF-QAS and TA-Fe, the films inhibited the growth of E. coli and S. aureus by 99.8 % and 99.7 %, respectively, and they exhibited high cell viability of 90.5 % for L929 fibroblasts. Based on the above encouraging properties, the functional PVA films could significantly extend the shelf life of oranges for over two weeks, proving the excellent application prospects in the food packaging field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call