Abstract

Flexible fabrics have gained widespread attention in thermal management and energy harvesting recently due to their fascinating merits of flexibility and breathability. However, the simple and efficient integration of multiple functions into a single fabric remains a challenge. Herein, a multifunctional fabric was prepared by in-situ polymerized polyaniline (PANI) and polypyrrole (PPy) onto air-laid paper (AP), followed by wrapping with hydrophobic reagent. The synergistic effect of PANI and PPy networks endowed the composite fabric with excellent photothermal performance. Additionally, the smart fabrics exhibited the terrific self-cleaning property. More promisingly, triboelectric nanogenerator (TENG) based on the smart fabrics as effective positive friction material could transform electrical signal with through collecting energy from small human movement, delivering charge of 82.7 nC, open circuit voltage of 213.6 V, and short circuit current of 14.7 μA. This work provides new insights for the study of the next generation lightweight, portable thermal management fabric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.