Abstract

In this study, multifunctional cementitious composites with integrated self-sensing and hydrophobicity capacities were developed and investigated using conductive graphene nanoplate (GNP) and silicone hydrophobic powder (SHP). The mechanical properties, permeability, water contact angle, microstructure and piezoresistivity were studied and compared under different contents of GNP and SHP. The highest compressive and flexural strengths with 1% SHP and 2% GNP reached 62.6 MPa and 8.9 MPa, respectively. The water absorption significantly was decreased with the content of SHP, but was minorly affected by GNP. The water contact angle firstly increased but then decreased with the dosages of GNP and SHP. SHP and GNP could reduce the microscale pores and enhance the density of microstructures. The piezoresistivity under compression firstly exhibited low gauge factor, but then gradually increased to a constant value under high-stress magnitude. Moreover, compared to the conventional cement-based sensors, this piezoresistive cementitious composites containing SHP and GNP as novel cement-based sensors are less sensitive to water content and humidity. The outcomes can provide an insight into promoting the application of multifunctional cement-based sensors toward structural health monitoring under various ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call