Abstract

A multifunctional (noncovalent) catalyst containing halogen-bond donor, hydrogen-bond donor, and Lewis basic sites was developed and applied in an enantioselective Mannich reaction between malononitrile and diphenylphosphinoyl-protected aldimine affording products in high yields (up to 98%) and moderate to high enantiomeric purities (ee up to 89%). Typically, noncovalent catalysts rely on several weak interactions to activate the substrate, with one or two of these giving the most notable contribution to activation. In this instance, instead of the initially proposed coactivation by halogen bonding, it was revealed that hydrogen bonding plays a key role in determining the enantioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.