Abstract
Carbon nanomaterials have wide applications in sensors, batteries, electromagnetic shielding, and mechanical reinforcement. Here, carbon nanofiber (CNF)-reinforced Ge25Sb10S65 chalcogenide glassy composites with excellent mechanical and electrical properties were obtained. These glassy composites maintained the amorphous properties of glass. Thermodynamic parameters, microscopic morphology, and structural characteristics were further studied. Benefiting from the remarkable high strength and conductivity of CNFs, as well as the great interface connection between CNFs and glass, the electrical and mechanical properties of glassy composites were greatly enhanced. The Vickers hardness improved by 36% (from 200 kg/mm2 to 272 kg/mm2), the tensile modulus increased from 45.9 GPa to 57 GPa, and the shear modulus increased from 22.2 GPa to 23.7 GPa when the CNF concentration increased from 0 wt% to 3.0 wt%. Furthermore, DC conductivity was raised by several orders of magnitude compared with bulk glass at 293 K (from 4.55 × 10−10 S/cm to 3.15 × 10−4 S/cm) owing to the formation of a continuous conductive network. Thus, these CNF-reinforced glassy composites provide a new way for realizing multifunctional composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.