Abstract

Inspired by information exchange and logic functions of life based on molecular recognition and interaction networks, ongoing efforts are directed toward development of molecular or nanosystems for multiplexed chem/biosensing and advanced information processing. However, because of their preparation shortcomings, poor functionality, and limited paradigms, it is still a big challenge to develop advanced nanomaterials-based systems and comprehensively realize neuron-like functions from multimode sensing to molecular information processing and safety. Herein, using fish scales derived carbon nanoparticles (FSCN) as a reducing agent and stabilizer, a simple one-step synthesis method of multifunctional silver-carbon nanocomposites (AgNPs-FSCN) is developed. The prepared AgNPs-FSCN own wide antibacterial and multisignal response abilities in five channels (including color, Tyndall, absorption and fluorescence intensities, and absorption wavelength) for quantitative colorimetric and fluorescence sensing of H2 O2 , ascorbic acid, and dopamine. Benefiting from its multicoding stimuli-responsive ability, molecular concealment, and programmability, AgNPs-FSCN can be abstracted as nanoneurons for implementing batch and parallel molecular logic computing, steganography, and cryptography. This research will promote the preparation of advanced multifunctional nanocomposites and the development of their multipurpose applications, including the multireadout-guided multianalyte intelligent sensing and sophisticated molecular computing, communication, and security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call