Abstract

Here, we prepared sulfur and nitrogen self-doped carbon dots derived from garlic peel extract (GPSNCDs) using a hydrothermal method. The as-synthesized GPSNCDs were confirmed using Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The analytical techniques indicate that the resulting GPSNCDs exhibit distinct emissive carbon-core with functionalities (owing to various ligands in the GPSNCDs). These functionalities are responsible for excellent hydrophilic and optical properties, including excitation-dependent emission and anti-photobleaching. Fluorescence intensities of GPSNCDs were quenched in the existence of Mn2+ and Fe3+ ions. This indicates that the GPSNCDs were sensitive to Fe3+ and Mn2+ ions with a limited range from 5 to 50 µM and showed lower recognition at ∼0.75 and 0.95 µM, respectively. In addition, the sensing results were generated in a short time (20 s). The cytotoxicity of GPSNCDs was tested to demonstrate that they are sufficiently safe to use for cellular imaging. The novel fluorescent GPSNCDs-based sensor can be used as a high-performance sensor for environmental monitoring. Further, GPSNCDs showed greater biocompatibility with normal fibroblast cells, and In Vitro fluorescent imaging of GPSNCDs revealed strong fluorescence signals in the two-dimensional (2D) and three-dimensional (3D) spheroids cultured fibroblast cells. The properties mentioned above demonstrate that the GPSNCDs can be applied to imaging normal cells without further modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.