Abstract

Materials that can simultaneously release CO and generate singlet oxygen upon visible light irradiation under ambient conditions are highly desirable for therapeutic applications. Furthermore, materials that can sequester the undesirable side products into the matrix without affecting the release of CO and singlet oxygen generation would allow them to be used for practical applications. Focussing on these aspects, we prepared two dipicolylamine appended BODIPY‑manganese(I) tricarbonyl complexes wherein the metal core was systematically tethered at 5- and 8- positions of the BODIPY core. The complexes were embedded into a polymer matrix via electrospinning and the resulting non-woven fabrics showed CO release as well as singlet oxygen generation upon irradiation. While the hybrid materials were non-toxic in dark, they were strongly photocytotoxic to c6 cancer cells when exposed to light. Rapid CO release alongside significant singlet oxygen generation, indefinite dark stability, good biocompatibility and negligible dark toxicity makes these fabrics a potent candidate for phototherapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call