Abstract

Conventional wound dressings fail to satisfy the requirements and needs of wounds in various stages. It is challenging to develop a multifunctional dressing that is hemostatic, antibacterial, anti-inflammatory, and promotes wound healing. Therefore, this study aimed to develop a multifunctional sponge dressing for the full-stage wound healing based on copper and two natural products, Bletilla striata polysaccharide (BSP) and peony leaf extract (PLE). The developed BSP-Cu-PLE sponges were characterized by SEM, XRD, FTIR, and XPS to assess micromorphology and elemental composition. Their properties and bioactivities were also verified by the further experiments, whereby the findings revealed that the BSP-Cu-PLE sponges had improved water absorption and porosity while exhibiting excellent antioxidative, biocompatible, and biodegradable properties. Moreover, the antibacterial test revealed that BSP-Cu-PLE sponges had superior antibacterial activity against S. aureus and E. coli. Furthermore, the hemostatic activity of BSP-Cu-PLE sponges was significantly enhanced in a rat liver trauma model. Most notably, further studies have demonstrated that the BSP-Cu-PLE sponges could significantly (p < 0.05) accelerate the healing process of skin wounds by stimulating collagen deposition, promoting angiogenesis, and decreasing inflammatory cells. In summary, the BSP-Cu-PLE sponges could provide a new strategy for application in clinical setting for full-stage wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.