Abstract

Ultra-sensitive detection of pathogenic bacteria is of great significance in the early stage of bacterial infections and treatment. In this work, we report a novel strategy using multifunctional Au nano-bridged nanogap nanoparticles (Au NNPs)-based sandwich nanocomposites, that made of Concanavalin A-conjugated Fe3O4@SiO2 NPs (ConA-Fe3O4@SiO2 NPs)/bacteria/aptamer-modified Au NNPs (apt-Au NNPs), for bacteria discrimination and quantitative detection by surface-enhanced Raman scattering (SERS) and inductively coupled plasma mass spectrometry (ICP-MS), and subsequently photothermal antibacterial assay. The sandwich nanocomposite consists of ConA-Fe3O4@SiO2 NPs to magnetically enrich and photothermal killing bacteria, and dual-signal tags of apt-Au NNPs for both SERS sensing and ICP-MS quantification. This strategy can specifically distinguish different kinds of pathogenic bacteria, and provided a good linear relationship of Staphylococcus aureus (S. aureus) in the range from 50 to 104 CFU/mL with a detection limit of 11 CFU/mL, as well as realized ultralow amounts of bacterial detection in serum sample with high accuracy. Based on the quantitative detection, high antibacterial efficiency was monitored by ICP-MS. Overall, the established method combines bacteria discrimination, quantitative detection, and photothermal elimination with a simple and rapid process, which provides a novel way for the early diagnosis and treatment of bacterial infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call