Abstract
Doping in organic–inorganic perovskite semiconductors is an effective method to tailor their optoelectronic properties. In this work, manganese-doped perovskite films with different Mn/Pb ratios ranging from 0% to 2% were systematically studied. The device performance of 0.2% Mn-doped devices was improved compared to that of a device without Mn. However, a further increase of the doping concentration induced a decrease in performance. Several characteristics (especially different scanning probe microscopy characteristics) reveal that an increased dopant concentration results in reduced crystallinity and a change in the film morphology and causes a deterioration in photovoltaic performance for higher dopant concentrations. In the best-performing samples (0.2%), a shift in the valence band level and band gap are found which are responsible for the increased open circuit voltage, while increased grain boundaries and lower surface charge density are responsible for a small reduction in the short circuit current. Thus, multifunctional scanning probe microscopy approaches, combined with different film characterization techniques, offer us effective tools to investigate the impact of doping in the perovskite materials and the corresponding device performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.