Abstract
In the past few years, designing multifunctional all-optical logic devices has attracted more and more attention in integrated optical computing. We report a metal-insulator-metal based four-port all-optical logic gate device containing two parallel straight waveguides and a ring resonator. We employ the scattering matrix method to analyze the coupling mechanisms of the hybrid waveguide and adopt the finite-difference time-domain method to design four fundamental logic functions of AND, OR, XOR, and NOT based on the all-optical coherent control of the four-port system under three symmetrically incident conditions. We demonstrate that these logic functions can be freely modulated by changing the phase difference of the input light at two resonant wavelengths or in a broad band. The logic gate device proposed shows a simple structure with multiple functions, multiple channels, and convenience in fabrication, and can be applied in parallel optical computing based on wavelength division multiplexing technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.