Abstract

We report a plasmonic paper-based analytical platform with functional versatility and subattomolar (<10(-18) M) detection limit using surface-enhanced Raman scattering as a transduction method. The microfluidic paper-based analytical device (μPAD) is made with a lithography-free process by a simple cut and drop method. Complex samples are separated by a surface chemical gradient created by differential polyelectrolyte coating of the paper. The μPAD with a starlike shape is designed to enable liquid handling by lateral flow without microchannel patterning. This design generates a rapid capillary-driven flow capable of dragging liquid samples as well as gold nanorods into a single cellulose microfiber, thereby providing an extremely preconcentrated and optically active detection spot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call