Abstract

In this work a family of multidimensional (2-(1H-tetrazol-5-yl)ethyl) amino acid coordination compounds have been synthesized and thoroughly characterized. For this purpose, glycine, valine, phenylalanine and tyrosine have been selected as starting amino acids and Mn2+, Zn2+ and Cd2+ as metallic nodes. From one side, for Mn2+ based dimer magnetic resonance imaging studies have been conducted, prompted by the number and disposition of the coordinated water molecules and taking into consideration the promising future of manganese-based coordination compounds as bio-compatible substitutes to conventional Gd based contrast agents. From another side, d10 block metal-based complexes allowed exploring photoluminescence properties derived by in situ synthesized ligands. Finally, amino acid preserved structural chirality allowed us to examine chiroptical properties, particularly focusing on circularly polarized luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.