Abstract

CO2 separation technology using polymeric membranes has emerged as a viable solution to mitigate the rapidly increasing anthropogenic CO2 emissions, which are directly linked to global warming and climate anomalies. However, in order to improve the gas separation performance, an intrinsic problem of polymeric membranes, i.e., a trade-off relationship between permeability and selectivity, needs to be addressed. In this study, a solid-state facilitated transport membrane is prepared by blending CO2-philic, amine-compatible poly(vinyl alcohol)-g-poly(oxyethylene methacrylate) (PVA-g-POEM) graft copolymer and diethylenetriamine (DETA) carriers. The graft copolymer consisting of PVA main chains and POEM side chains is synthesized via one-pot free radical polymerization and used as a polymer matrix. With the incorporation of 10 wt % of DETA into the polymer, the membrane exhibits a high CO2 permeance of 402.5 GPU (1 GPU = 10–6 cm3(STP)/(s·cm2·cmHg)) and CO2/N2 selectivity of 52.1. The enhanced performance of th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.