Abstract

To enhance the treatment efficiency in tumor therapy, we developed a tumor-targeting protein-based delivery system, DOX&ICG@BSA-KALA/Apt, to efficiently integrate multimodal therapy with tumor imaging and realize synchronous photodynamic therapy/photothermal therapy/chemotherapy. In the delivery system, a chemotherapeutic drug (doxorubicin, DOX) and an optotheranostic agent (indocyanine green, ICG) were co-loaded in bovine serum albumin (BSA) via a hydrophobic-interaction-induced self-assembly to form stable DOX&ICG@BSA nanoparticles. After the decoration of a surface layer composed of a tumor-targeting aptamer (AS1411) and a cell-penetrating peptide (KALA), the obtained DOX&ICG@BSA-KALA/Apt nanoparticles exhibit a significantly improved multimodal cancer therapeutic efficiency due to the enhanced cancer cellular uptake mediated by AS1411 and KALA. In vitro and in vivo studies show that the multimodal theranostic system can efficiently inhibit tumor growth. In addition, the near-infrared fluorescent/photothermal dual-mode imaging enables accurate visualization of the therapeutic action in tumor sites. This study provides a facile strategy to construct self-assembled multimodal theranostic systems, and the functional protein-based theranostic system prepared holds great promise in multimodal cancer therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.