Abstract

In a very recent experimental work (Gao et al 2018 Adv. Mater. 30 1707055), a graphene-like CuSe monolayer (ML) was realized. Motivated by this success, we performed first-principles calculations to investigate its electronic transport and photoelectronic properties. We find that the CuSe ML shows a strong electrical anisotropy, and its current–voltage (I–V) curves along the zigzag and armchair directions are noticeably different. The CuSe ML also displays a useful negative differential resistance (NDR) effect along the both directions when the bias is beyond 1.0 V. Moreover, it has a large photon absorption to orange light. Our study suggests that CuSe ML is a multifunctional material and has various potential applications in electrical-anisotropy-based, NDR-based, and even optical nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.