Abstract

In this work, an ultra-steady combustion technique was attempted to achieve fuel adaptability combustion. The combustion performances of five representative gaseous fuels in a stratified vortex-tube combustor were investigated in terms of the stability limit, pressure fluctuation, and flame topology. Results show that the lean stability limit of the global equivalence ratio for the five fuels can always be less than 0.15 with a uniform flame front, whilst the amplitude of pressure fluctuations is always below 2300 Pa, indicating a super-steady combustion process. The non-premixed flame structure guarantees a high mass concentration near the reaction zone, whilst the vortex flow also decreases the local flow velocity, inhibiting flame blow-out, and suggesting good self-adjusting capacity under various global equivalence ratios. The synergistic action of the flow and flame structures transports the interior high-enthalpy burnt gas and exterior unburnt gas to the exterior unburnt gas and reaction zones to promote the ignition and reaction procedures, resulting in an intensified combustion. The large tangential velocity and density gradient result in the large values of Richardson number, which indicates that laminarization of the flow arises and results in good aero-dynamic and thermo-dynamic stabilities. The resultant good self-adjusting capacity and three types of dynamic stabilities are the intrinsic causes of the ultra-steady combustion process in this combustor. Ultimately, the generalized criterion of stabilization can be defined by the combination of Richardson and Rayleigh numbers, for which large Richardson and small Rayleigh numbers are required for a highly steady combustion process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call