Abstract
AbstractTo face the advent of multicore processors and the ever increasing complexity of hardware architectures, programming models based on DAG parallelism regained popularity in the high performance, scientific computing community. Modern runtime systems offer a programming interface that complies with this paradigm and powerful engines for scheduling the tasks into which the application is decomposed. These tools have already proved their effectiveness on a number of dense linear algebra applications. This paper evaluates the usability of runtime systems for complex applications, namely, sparse matrix multifrontal factorizations which constitute extremely irregular workloads, with tasks of different granularities and characteristics and with a variable memory consumption. Experimental results on real-life matrices show that it is possible to achieve the same efficiency as with an ad hoc scheduler which relies on the knowledge of the algorithm. A detailed analysis shows the performance behavior of the resulting code and possible ways of improving the effectiveness of runtime systems.Keywordssparse matricesmultifrontal methodQR factorizationruntime systemsheterogeneous architectures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.