Abstract

A reliable data-driven tool condition monitoring system is more and more promising for cutting down on machine downtime and economic losses. However, traditional methods are not able to address machining big data because of low model generalizability and laborious feature extraction by hand. In this paper, a novel deep learning model, named multi-frequency-band deep convolution neural network (MFB-DCNN), is proposed to handle machining big data and to monitor tool condition. First, samples are enlarged and a three-layer wavelet package decomposition is applied to obtain wavelet coefficients in different frequency bands. Then, the multi-frequency-band feature extraction structure based on a deep convolution neural network structure is introduced and utilized for sensitive feature extraction from these coefficients. The extracted features are fed into full connection layers to predict tool wear conditions. After this, milling experiments are conducted for signal acquisition and model construction. A series of hyperparameter selection experiments is designed for optimization of the proposed MFB-DCNN model. Finally, the prediction performance of typical models is evaluated and compared with that of the proposed model. The results show that the proposed model has outstanding generalizability and higher prediction performance, and a well designed structure can remedy the absence of complicated feature engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call