Abstract

Multifrequency superscattering is a phenomenon in which the scattering cross section from a subwavelength object simultaneously exceeds the single-channel limit at multiple frequency regimes. Here, we achieve simultaneously, within a graphene-coated subwavelength structure, multifrequency superscattering and superscattering shaping with different engineered scattering patterns. It is shown that multimode degenerate resonances at multiple frequency regimes appearing in a graphene composite structure due to the peculiar dispersion can be employed to resonantly overlap electric and magnetic multipoles of various orders, and, as a result, effective multifrequency superscattering with different engineered angular patterns can be obtained. Moreover, the phenomena of multifrequency superscattering have a high tolerance to material losses and some structural variations. Our work should anticipate extensive applications ranging from emission enhancing, energy harvesting, and antenna design with improved sensitivity and accuracy due to multifrequency operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call