Abstract

The issues of experimental determination of electrodynamic parameters of existing and new synthesized materials and coatings used in the microwave range are highlighted. Problems arising from measurements of the electrophysical and geometric parameters of dielectric and magnetodielectric coatings, taking into account their placement on a metal substrate, by radio wave methods are considered. We present the new radio wave method of joint measurements of the frequency dependence of the complex permittivity, the frequency dependence of the complex magnetic permeability, and the thickness of plane-layered samples of dielectric and magnetodielectric coatings on a metal substrate. Determination of electrophysical and geometric parameters of the coating in the proposed method is reduced to minimizing the objective function constructed based on the discrepancy between the experimental and design theoretical values of the attenuation coefficients of surface electromagnetic wave fields on a grid of discrete frequencies. The simulation model of measurements is shown, implemented on the basis of the electrodynamic modeling system CST Microwave studio (Simulia corporation, USA) and the Matlab system. The results of simulation are presented to determine the frequency dependences of the electrophysical parameters and the thickness of a sample of a radio-absorbing coating on a metal substrate. Errors in the estimates of permittivity and permeability in the measurement frequency band 9–13.5 GHz, which are no more than 10 % with a confidence level of 0.95 with a mean square deviation of the noise level of 0.006, have been obtained. The proposed method can be in demand in various science-intensive areas – microelectronic, aerospace, mechanical engineering, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call