Abstract
The results from a multifrequency high-field EPR study of five di-μ-oxo bridged mixed-valence binuclear Mn(III)Mn(IV) complexes are reported. Spectra were obtained at 9, 95, and 285 GHz. The g anisotropy was unambiguously observable at 285 GHz. Hyperfine and g tensor values were estimated using spectral simulation procedures that cyclically and simultaneously fit the multifrequency data. In all five cases, the g tensors of the mixed-valence complexes were found to be rhombic. The g tensors were analyzed using the vector projection model. Most, but not all, of the g anisotropy originates from the Mn(III) center. The rhombic g tensors result from the low symmetry of the manganese centers. The size of the effective g anisotropy for a given complex was found to be a linear function of the average bond distance between the manganese and axial nitrogens. This relationship can be understood in terms of the influence of tetragonal distortion on the electronic levels of the Mn(III) center. The frequency-dependent ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.