Abstract

The author reviews recent multichannel models developed in psychophysiology, computer vision, and image processing. In psychophysiology, multichannel models have been particularly successful in explaining some low-level processing in the visual cortex. The expansion of a function into several frequency channels provides a representation which is intermediate between a spatial and a Fourier representation. The author describes the mathematical properties of such decompositions and introduces the wavelet transform. He reviews the classical multiresolution pyramidal transforms developed in computer vision and shows how they relate to the decomposition of an image into a wavelet orthonormal basis. He discusses the properties of the zero crossings of multifrequency channels. Zero-crossing representations are particularly well adapted for pattern recognition in computer vision. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call