Abstract
The multi-frame super resolution (SR) problem is to generate high resolution (HR) images by referring to a sequence of low resolution (LR) images. However, traditional multi-frame SR methods fail to take full advantage of the redundancy in LR images. In this paper, we present a novel algorithm using a refined example-based SR framework to cope with this problem. The refined framework includes two innovative points. First, based upon a thorough study of multi-frame and single frame statistics, we extend the single frame example-based scheme to multi-frame. Instead of training an external dictionary, we search for examples in the image pyramids of the LR inputs, i.e., a set of multi-resolution images derived from the input LRs. Second, we propose a new metric to find similar image patches, which not only considers the intensity and structure features of a patch but also adaptively balances between these two parts. With the refined framework, we are able to make the utmost of the redundancy in LR images to facilitate the SR process. As can be seen from the experiments, it is efficient in preserving structural features. Experimental results also show that our algorithm outperforms state-of-the-art methods on test sequences, achieving the average PSNR gain by up to 1.2dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.