Abstract

The study of brain network connectivity as a time-varying property began relatively recently and to date has remained primarily concerned with capturing a handful of discrete static states that characterize connectivity as measured on a timescale shorter than that of the full scan. Capturing group- level representations of temporally evolving patterns of connectivity is a challenging and important next step in fully leveraging the information available in large resting state functional magnetic resonance imaging (rs-fMRI) studies. We introduce a flexible, extensible data-driven framework for the identification of group-level multiframe (movie-style) dynamic functional network connectivity (dFNC) states. Our approach employs uniform manifold approximation and embedding (UMAP) to produce a planar embedding of the high-dimensional whole-brain connectivity dynamics that preserves important features, such as trajectory continuity, characterizing dynamics in the native high dimensional state space. The method is validated in application to a large rs- fMRI study of schizophrenia where it extracts naturalistic fluidly-varying connectivity motifs that differ between schizophrenia patients (SZs) and healthy controls (HC).Functional Magnetic Resonance Imaging, Functional Network Connectivity, Dynamic Functional Network Connectivity, Schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call