Abstract

We develop the optimal Bayes multiframe detector/tracker for rigid extended targets that move randomly in clutter. The performance of this optimal algorithm provides a bound on the performance of any other suboptimal detector/tracker. We determine by Monte Carlo simulations the optimal performance under a variety of scenarios including spatially correlated Gaussian clutter and non-Gaussian (K and Weibull) clutter. We show that, for similar tracking performance, the optimal Bayes tracker can achieve peak signal-to-noise ratio gains possibly larger than 10 dB over the commonly used combination of a spatial matched filter (spatial correlator) and a linearized Kalman-Bucy tracker. Simulations using real clutter data with a simulated target suggest similar performance gains when the clutter model parameters are unknown and estimated from the measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.