Abstract

We define multifractional Hermite processes which generalize and extend both multifractional Brownian motion and Hermite processes. It is done by substituting the Hurst parameter in the definition of Hermite processes as a multiple Wiener–Itô integral by a Hurst function. Then, we study the pointwise regularity of these processes, their local asymptotic self-similarity and some fractal dimensions of their graph. Our results show that the fundamental properties of multifractional Hermite processes are, as desired, governed by the Hurst function. Complements are given in the second order Wiener chaos, using facts from Malliavin calculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.