Abstract

Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. Roller bearings are working at high speed in a heavy load environment so that the combination of bearing faults gradually degraded during the rotation might lead to unpredicted catastrophic accidents. The degradation process has the property of long-range dependence (LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. Because of the dramatic changes in the bearing degradation process, the Hurst exponent that describes the fBm will change during the degradation process. A priori Hurst value of the conventional fBm in the prediction is fixed, thus inducing a minor accuracy of the prediction. To avoid this problem, we propose an improved prediction method. Based on the following steps, at the initial data processing, a skip-over factor is selected as the characteristics parameter of the bearing degradation process. A multifractional Brownian motion (mfBm) replaces the fBm for the degradation modeling. We will show that also our mfBm has the same property of long-range dependence as the fBm. Moreover, a time-varying Hurst exponent H(t) is taken to replace the constant H in fBm. Finally, we apply the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding experimental results will show that our model QPSO + mfBm have a much better performance on the prediction effect than fBm.

Highlights

  • ROLLER bearings represent the largest application of rotating mechanisms

  • In order to solve this problem, we propose an improved model called multifractional Brownian motion

  • Monte Carlo method is used to show that the combination of multifractional Brownian motion (mfBm) and quantum-behaved partial swarm optimization (QPSO) is superior to the fractional Brownian motion (fBm) model of bearing degradation forecasting

Read more

Summary

Research Article

Received 15 September 2019; Accepted 20 December 2019; Published 31 January 2020. Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. E degradation process has the property of long-range dependence (LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. A priori Hurst value of the conventional fBm in the prediction is fixed, inducing a minor accuracy of the prediction. To avoid this problem, we propose an improved prediction method. A multifractional Brownian motion (mfBm) replaces the fBm for the degradation modeling. We will show that our mfBm has the same property of long-range dependence as the fBm. a time-varying Hurst exponent H(t) is taken to replace the constant H in fBm. we apply the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding experimental results will show that our model QPSO + mfBm have a much better performance on the prediction effect than fBm

Introduction
Radial Load
Real data MfBm
Relative errors
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.