Abstract
We study stationary states for the nonlinear Schrödinger equation on Fibonacci lattices, which are expected to be realized by Bose–Einstein condensates loaded into an optical lattice. When the model does not have a nonlinear term, the wavefunctions and the spectrum are known to show fractal structures. Such wavefunctions are termed critical. We present a phase diagram of the energy spectrum for varying the nonlinearity. It consists of three portions: a forbidden region, the spectrum of critical states and the spectrum of stationary solitons. We show that the energy spectrum of critical states remains intact, irrespective of the nonlinearity in the large number of stationary solitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: New Journal of Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.