Abstract

When fixating on a stationary object, the human eye exhibits microfluctuations in accommodation. Changes in the magnitude of these fluctuations reflect changes in the accommodation control system. We used adaptive optics to determine the effect of monochromatic aberration dynamics on the control of steady-state accommodation of four subjects. The subjects viewed a stationary stimulus at 2 D while selective Zernike aberrations were corrected. The fluctuations in accommodation were characterised using a wavelet-based multifractal formalism approach. We found that for all subjects, and all experimental conditions, the accommodative fluctuations were multifractal. For one subject, we found that the width of the multifractal spectrum was statistically significantly larger when even-order aberrations were corrected as compared to no aberrations corrected. Hence, in general, for the subjects tested, the multifractal nature of steady-state accommodation control is unaffected by the manipulation of monochromatic aberration dynamics. Averaging across all subjects and experimental conditions, the mean spectrum was right-skewed with a most frequently occurring Hölder exponent of 0.31 ± 0.08. Future applications of multifractal analysis to accommodation control are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call