Abstract

The multifractal analysis of relativistic shower particles produced in 32S–emulsion interactions at 200AGeV has been investigated using the method of modified multifractal moments, Gq, in pseudo-rapidity space. The anomalous fractal dimension, dq, and generalized fractal dimensions, Dq, are determined for the present data for different order of moment. The experimental data reflects multifractal geometry in a multipion production process. The downward concave shape of the multifractal spectral function, f(αq), gives an evidence for self-similar cascade mechanism. The multifractal specific heat has also been evaluated for the present data using the generalized fractal dimensions, Dq. We compared our experimental results with those obtained from simulated events of the Lund Monte Carlo Code FRITIOF and uncorrelated Monte Carlo events, (MC-RAND) generated randomly in pseudorapidity space based on the assumption of independent emission of particles. The experimental data on multifractality has been found to exhibit a remarkable proximity to the analogous data obtained from the FRITIOF code and the uncorrelated Monte Carlo events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call