Abstract

Using numerical simulations, we investigate the distribution of Kondo temperatures at the Anderson transition. In agreement with previous work, we find that the distribution has a long tail at small Kondo temperatures. Recently, an approximation for the tail of the distribution was derived analytically. This approximation takes into account the multifractal distribution of the wavefunction amplitudes (in the parabolic approximation), and power law correlations between wave function intensities, at the Anderson transition. It was predicted that the distribution of Kondo temperatures has a power law tail with a universal exponent. Here, we attempt to check that this prediction holds in a numerical simulation of Anderson's model of localisation in three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.