Abstract
We present experimental evidence of multifractality and scale-free network topology in a noise-perturbed laminar jet operated in a globally stable regime, prior to the critical point of a supercritical Hopf bifurcation and prior to the saddle-node point of a subcritical Hopf bifurcation. For both types of bifurcation, we find that (i) the degree of multifractality peaks at intermediate noise intensities, (ii) the conditions for peak multifractality produce a complex network whose node degree distribution obeys an inverse power-law scaling with an exponent of $2 < \gamma < 3$ , indicating scale-free topology and (iii) the Hurst exponent and the global clustering coefficient can serve as early warning indicators of global instability under specific operating and forcing conditions. By characterising the noise-induced dynamics of a canonical shear flow, we demonstrate that the multifractal and scale-free network dynamics commonly observed in turbulent flows can also be observed in laminar flows under certain stochastic forcing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.