Abstract
The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.