Abstract
The role of the geometric fluctuations on the multifractal properties of the local magnetization of aperiodic ferromagnetic Ising models on hierarchical lattices is investigated. The geometric fluctuations are introduced by generalized Fibonacci sequences. The local magnetization is evaluated via an exact recurrent procedure encompassing real space renormalization group decimation. The symmetries of the local magnetization patterns induced by the aperiodic couplings is found to be strongly (weakly) different, with respect to the ones of the corresponding homogeneous systems, when the geometric fluctuations are relevant (irrelevant) to change the critical properties of the system. At the criticality, the measure defined by the local magnetization is found to exhibit a non-trivial F(α) spectra being shifted to higher values of α when relevant geometric fluctuations are considered. The critical exponents are found to be related with some special points of the F(α) function and agree with previous results obtained by the quite distinct transfer matrix approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.